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Abstract

Application of the lattice Boltzmann method (LBM) to solve the energy equations of conduction–radiation problems is extended on
non-uniform lattices. In the LBM on non-uniform lattices, the single relaxation time based on the minimum velocity is used. This min-
imum velocity corresponds to the smallest size lattice. Because information propagates with the same minimum velocity in the prescribed
directions from all the lattice centers, in a given time step, they are not equidistant from the neighboring lattices. Collisions in the LBM
take place at the same instant. Therefore, in the LBM on non-uniform lattices, in every time step, interpolation is required to carry the
information to the neighboring lattice centers. To validate this very concept in heat transfer problems involving thermal radiation, tran-
sient conduction and radiation heat transfer problems in a 1-D planar and a 2-D rectangular geometries containing absorbing, emitting
and scattering medium are considered. The finite volume method (FVM) is used to compute the radiative information. In both the geom-
etries, results for the effects of various parameters are compared for LBM–FVM on uniform and non-uniform lattices. To establish the
LBM–FVM on non-uniform lattices for the combined conduction and radiation heat transfer problems, numerical experiments were
performed with different cluster values. The accurate results were found in all the cases.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In the recent past, the lattice Boltzmann method (LBM)
has received much attention in science and engineering as a
potential computational tool for solving a large class of
problems. Among many other types of problems, the
LBM has been successfully used to simulate a wide range
of fluid flow and heat transfer problems [1–12]. Owing to
its mesocopic origin, the LBM is emerging as a versatile
computational method that has many advantages. In com-
parison to the conventional CFD solvers like the finite dif-
ference method (FDM), the finite element method (FEM)
and the finite volume method (FVM), the advantages of
the LBM comprises of a clear physical meaning, a simple
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calculation procedure, simple and more efficient implemen-
tation for parallel computation, straightforward and effi-
cient handling of complex geometries and boundary
conditions, high computational performance with regard
to stability and precision, etc. [1–20]. Further, the LBM
also has a memory overhead over other methods since it
deals with less number of scalars [20].

The LBM has found a wide usage in fluid flow problems
[4–8] and it is also finding applications in heat transfer
problems involving conduction, convection and/or radia-
tion [2,3,6,11,14–19,21–25]. Massaioli et al. [2] and Shan
[3] used the LBM to analyze the Rayleigh–Benard convec-
tion in a square cavity. Solidification of a planar medium
using the LBM was analyzed by Jiaung et al. [14]. Ho
et al. [15,16] solved a non-Fourier heat conduction problem
in a planar medium using the LBM. Chatterjee and Chakr-
aborty [17] used the LBM to analyze solid–liquid phase
transitions in the presence of thermal diffusion.
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Nomenclature

A area
a anisotropy factor
b number of discrete directions in the lattice
cp specific heat
C cluster value
~ei propagation velocity in the direction i in the lat-

tice
fi particle distribution function in the i direction
f ð0Þi equilibrium particle distribution function in the i

direction
G incident radiation
I intensity
k thermal conductivity
Mh number of divisions of the polar angle h
M/ number of divisions of the azimuthal angle /
m index for direction
N conduction–radiation parameter, jb=ð4rT 3

refÞ
n̂ outer normal
P cell center
~qR radiative heat flux
~r position, r(x,y,z)
S source term
T temperature
t time
V volume of the cell
w weight in the LBM
X, Y, Z length of the rectangular enclosure in x-, y- and

z-directions

Greek symbols

a thermal diffusivity
b extinction coefficient
c finite-difference weighing factor

e emissivity
h polar angle
ja absorption coefficient
f non-dimensional time, ab2t

q density
r Stefan–Boltzmann constant(=5.670 � 10�8 W/

m2 K4)
rs scattering coefficient
s relaxation time
U scattering phase function
/ azimuthal angle
x scattering albedo
X direction in the FVM and rate of change of the

particle distribution function fi in the LBM
DX elemental solid angle

Subscripts

E, W, N, S, F, B east, west, north, south, front and back
b boundary
x, y, z x, y and z reference faces
e exit
i inlet
k, l index of discrete polar and azimuthal angles,

respectively
P value at the cell centre

Superscript

m index for direction
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Application of the LBM in solving energy equations of
heat transfer problems involving thermal radiation was
extended by Mishra and co-workers [18,19,21–25]. Mishra
and Lankadasu [18] applied the LBM to solve the energy
equation of transient conduction and radiation heat trans-
fer in a planar medium with or without heat generation.
They used the discrete transfer method (DTM) to compute
the radiative information. The application of the LBM to
the solution of the energy equation of a conduction–radia-
tion problem in a 2-D rectangular geometry was extended
by Mishra et al. [19]. In their study, the radiative informa-
tion was computed using the collapsed dimension method
(CDM). Raj et al. [21] used the LBM to analyze the solid-
ification of a semitransparent planer layer. They used the
DTM to compute the radiative information. Parida et al.
[22] extended the work of Raj et al. [21] by considering
radiative and convective cooling along the boundaries
and used the discrete ordinate method (DOM) for the radi-
ative information. Gupta et al. [23] used a variable relaxa-
tion time LBM to solve the energy equation of a
temperature dependent transient conduction and radiation
heat transfer in a planer medium. They used the DOM to
compute the radiative information. Mishra and Roy [24]
used the LBM to solve conduction–radiation problems in
1-D and 2-D rectangular geometries and used the finite vol-
ume method (FVM) to compute the radiative information.
Mondal and Mishra [25] solved the same problems as those
of [24] using the LBM and the DOM. In all the previous
applications of the LBM to heat transfer problems
[2,3,14–19,21–25], uniform size lattices/control volumes
were used in the LBM.

In CFD, non-uniform or unstructured control volumes
are often required to economically capture sharp variations
in the quantities like temperature, heat flux, etc. In the pre-
vious applications of the LBM to heat transfer problems
[2,3,14–19,21–25], unlike its application to fluid flow prob-
lems [26–29], non-uniform or unstructured lattices/control
volumes have not been tested so far. However, as proposed
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in the literature [1–12], if the LBM is to qualify for a versa-
tile CFD tool, like the FDM and the FVM of the CFD, for
thermal problems involving radiation, conduction and/or
convection too it should work for non-uniform or unstruc-
tured lattices/control volumes. Towards the above objec-
tive, in the present work, the LBM is used to solve the
energy equations of transient conduction and radiation
problems in a 1-D planar and a 2-D rectangular geometry
on non-uniform lattices. Different types of lattice clustering
are used to test the workability of the LBM to this class of
problems. Since the FVM [24,30] is more suitable to all
types of control volumes than other methods like the
DTM, the DOM etc. of the radiative transfer, in the pres-
ent work, we too have adopted the FVM to compute the
radiative information for the energy equation. To check
the performance of the LBM–FVM on non-uniform lat-
tices/control volumes, the same problems are also solved
for the uniform lattices/control volumes. Results have been
compared for different values of the scattering albedo, the
boundary emissivity, the conduction radiation parameter
and the clustering parameter.
2. Formulation

Energy equation of a transient conduction and radiation
heat transfer problem without heat generation is given by

qcp
oT
ot
¼ kr2T �r �~qR; ð1Þ

where q is the density, cp is the specific heat, k is the ther-
mal conductivity and ~qR is the radiative heat flux.

The procedure of the FVM [24,30] for radiative heat
transfer is much similar to that of the FVM of the CFD,
on non-uniform or unstructured lattices/control volumes,
this method is more suitable than rest all other numerical
radiative transfer methods such as the Monte Carlo
method, the DTM, the CDM and the DOM. Since the
present work deals with the solution of the energy equation
(1) using the LBM on non-uniform lattices, the FVM has
been used to compute the radiative information r �~qR in
Eq. (1). The details of the methodologies of the FVM
adopted in the present work for the computations of
r �~qR can be found in Mishra and Roy [24]. In the follow-
ing pages, we briefly discuss the FVM for the computation
of r �~qR and that of the LBM to solve the energy equation
(Eq. (1)).
2.1. The finite volume method (FVM)

The radiative transfer equation (RTE) in any direction ŝ
about an elemental solid angle dX is given by

dI
ds
¼ �bI þ S; ð2Þ

where b is the extinction coefficient and S is the source term
given by
S ¼ ja

rT 4

p

� �
þ rs

4p

Z
X0¼4p

IðX0ÞUðX;X0ÞdX0; ð3Þ

where ja is the absorption coefficient, rs is the scattering
coefficient and U is the scattering phase function. Resolving
Eq. (1) along the Cartesian coordinate directions and inte-
grating it over the elemental solid-angle DXm, we get

oIm

ox
Dm

x þ
oIm

oy
Dm

y þ
oIm

oz
Dm

z ¼ �bImDXm þ SmDXm: ð4Þ

When the surface normal n̂ is pointing towards one of the
positive coordinate directions, Dm

x ;D
m
y and Dm

z are given by
[24]

Dm
x ¼ cos /m sin

D/m

2

� �
Dhm � cos 2hm sin Dhmð Þ½ � ð5aÞ

Dm
y ¼ sin /m sin

D/m

2

� �
Dhm � cos 2hm sin Dhmð Þ½ � ð5bÞ

Dm
z ¼ sin hm cos hm sin Dhmð ÞD/m ð5cÞ

For n̂ pointing towards the negative coordinate directions,
signs of Dm

x ;D
m
y and Dm

z are opposite to what are obtained
from Eq. (5). In Eq. (4), DXm is given by [24]

DXm ¼ 2 sin hm sin
Dhm

2

� �
D/m ð6Þ

Integrating Eq. (4) over the control volume, we get

Im
E � Im

W

� �
AEWDm

x þ Im
N � Im

S

� �
ANSDm

y þ Im
F � Im

B

� �
AFBDm

z

¼ �bVIm
P þ VSm

P

� �
DXm; ð7Þ

where AEW, ANS and AFB are the areas of the x-, y- and
z-faces of the 3-D control volume, respectively. In Eq.
(7), I with suffixes E, W, N, S, F and B designate east, west,
north, south, front and back control surface average inten-
sities, respectively. On the right-hand side of Eq. (7),
V = dx � dy � dz is the volume of the cell and Im

P and Sm
P

are the volume averaged intensities and source term at
the cell centre P, respectively.

In any discrete direction Xm, if a linear relationship
among the two cell-surface intensities and cell-centre inten-
sity Im

P is assumed, then

Im
P ¼ cxI

m
E þ ð1� cxÞIm

W ¼ cyI
m
N þ ð1� cyÞIm

S

¼ czI
m
F þ ð1� czÞIm

B ; ð8Þ

where c is the finite-difference weighting factor and its value
is normally considered to be 0.5. While marching from the
first octant of a 3-D enclosure, for which Dm

x ;D
m
y and Dm

z are
all positive, Im

P in terms of known cell-surface intensities can
be written as [24]

Im
P ¼

Dm
x AEW

cx
Im

W þ
Dm

y ANS

cy
Im

S þ
Dm

z AFB

cz
Im

B þ V DXmSm
P

Dm
x AE

cx
þ Dm

y AN

cy
þ Dm

y AF

cz
þ bV DXm

; ð9Þ
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where

AEW ¼ ð1� cxÞAE þ cxAW;ANS

¼ ð1� cyÞAN þ cyAS;AFB ¼ ð1� czÞAF þ czAB ð10Þ

are the averaged areas. When any one of the Dm
x ;D

m
y or Dm

z

is negative, marching starts from other corners. In this
case, a general expression of Im

P in terms of known intensi-
ties and source term can be written as

Im
P ¼

jDm
x jAx

cx
Im

xi
þ jD

m
y jAy

cy
Im

yi
þ jD

m
z jAz

cz
Im

zi
þ V DXmSm

P

jDm
x jAxe

cx
þ jD

m
y jAye

cy
þ jD

m
z jAze

cz
þ bV DXm

; ð11Þ

where in Eq. (11), xi, yi and zi suffixes over Im are for the
intensities entering the control volume through x-, y- and
z-faces, respectively and Ax, Ay and Az are given by

Ax ¼ ð1� cxÞAxe þ cxAxi
;

Ay ¼ ð1� cyÞAye
þ cyAyi

; Az ¼ ð1� czÞAze þ czAzi
: ð12Þ

In Eq. (11) A with suffixes xi, yi and zi represent control
surface areas through which intensities enter the con-
trol volume, while A with suffixes xe, ye and ze represent
Fig. 1. Geometry and arrangements of the lattices of the LBM and control volu
lattices/control volumes (a) 1-D planar medium and (b) 2-D rectangular geom
control surface areas through which intensities leave the
control volume.

For a linear anisotropic phase function U(X,X0) =
1 + acoshcosh0, the source term S at any location ~r is in
terms of the incident radiation G and net radiative heat flux
qR is written as

S ¼ rs

4p
½Gþ a cos hqR�: ð13Þ

In Eq. (13), G and qR are numerically computed from the
following [24]

G �
XM/

k¼1

XMh

l¼1

Imðhm
l ;/

m
k Þ2 sin hm

l sin
Dhm

l

2

� �
D/m

k ð14Þ

qR �
XM/

k¼1

XMh

l¼1

Imðhm
l ;/

m
k Þ sin hm

l cos hm
l sinðDhm

l ÞD/m
k ; ð15Þ

where Mh and M/ are the number of discrete points consid-
ered over the complete span of the polar angle
(0 6 h 6 p)and azimuthal angle (0 6 / 6 2p), respectively.
For a diffuse-gray boundary having temperature Tb and
emissivity eb, the boundary intensity Ib is computed from
mes of the FVM for calculation of radiative information with non-uniform
etry.



Fig. 2. Different types of non-uniform lattices for the 1-D planar medium.
Table 1
Comparison of transient temperature h at time f = 0.05 for b = 1.0,
TE = 0.0, x = 0.5, and N = 0.1 and two sets of wall reflectivities

eW eE Investigators Transient temperature T
T W

x/
X = 0.25

x/
X = 0.50

x/
X = 0.75

1.0 1.0 Barker and Sutton [31] 0.4893 0.1775 0.0588
Sutton [32] 0.4888 0.1778 0.0591
Tsai and Lin [33] 0.4889 0.1773 0.0588
Talukdar and Mishra
[34]

0.4892 0.1768 0.0585

Uniform lattices
(present)

0.4898 0.1771 0.0581

Non-uniform lattices
(present)

0.4898 0.1771 0.0581

1.0 0.0 Barker and Sutton [31] 0.5035 0.2003 0.0831
Sutton [32] 0.5030 0.2005 0.0833
Tsai and Lin [33] 0.5031 0.2001 0.0830
Talukdar and Mishra
[34]

0.5033 0.1995 0.0824

Uniform lattices
(present)

0.5018 0.1965 0.0817

Non-uniform lattices
(present)

0.5010 0.1953 0.0804
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Ib ¼
ebrT 4

b

p
þ 1� eb

p

� �XM/

k¼1

XMh=2

l¼1

Imðhm
l ;/

m
k Þ sin hm

l

� cos hm
l sin Dhm

l D/m
k : ð16Þ

Once the intensity distributions are known, radiative infor-
mation r �~qR required for the energy equation is computed
from

r �~qR ¼ bð1� xÞ 4p
rT 4

p
� G

� �
; ð17Þ

where in Eq. (17), x = rs/b is the scattering albedo.

2.2. Lattice Boltzmann method (LBM) formulation

For the sake of completeness and also to describe the
implementation of the LBM on non-uniform lattices for
solving energy equations of a transient conduction–radia-
tion problem, we briefly provide here the formulation of
the LBM. Details on the implementation of the LBM to
heat transfer problems involving thermal radiation can be
found in the works of Mishra and co-workers [18,19,21–
25].

The discrete Boltzmann equation that describes the evo-
lution of the particle distribution function fi is written as
[9,10]

fið~r þ~eiDt; t þ DtÞ ¼ fið~r; tÞ �
Dt
s
½fið~r; tÞ � f ð0Þi ð~r; tÞ�;

i ¼ 1; 2; 3; . . . ; b; ð18Þ

where fi is the particle distribution function,~ei is the veloc-
ity, s is the relaxation time, f ð0Þi is the equilibrium distribu-
tion function and b is the number of directions in a lattice
through which the information propagates. In heat transfer
problems, s for the D1Q2 and D2Q9 lattices are computed
respectively as

D1Q2 s ¼ a

j~eij2
þ Dt

2
; ð19Þ

D2Q9 s ¼ 3a

j~eij2
þ Dt

2
; ð20Þ

with fi known, the temperature T is obtained from the
following:

T ð~r; tÞ ¼
Xb

i¼0

fið~r; tÞ: ð21Þ

To process Eq. (18), an equilibrium distribution function is
required which is given by

f ð0Þi ð~r; tÞ ¼ wiT ð~r; tÞ; ð22Þ
where wi is the weight corresponding to the i direction and
for different lattices its values are given in [24]. From Eqs.
(21) and (22), we also have
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Fig. 3. Comparison of temperature h in a planar medium at different instants f for scattering albedo x = (a) 0.0, (b) 0.5 and (c) 0.9.
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Xb

i¼0

f ð0Þi ð~r; tÞ ¼
Xb

i¼0

wiT ð~r; tÞ ¼ T ð~r; tÞ ¼
Xb

i¼0

fið~r; tÞ ð23Þ

To account for the volumetric radiation, Eq. (18) gets mod-
ified to [18,19]

fið~r þ~eiDt; t þ DtÞ

¼ fið~r; tÞ �
Dt
s

fið~r; tÞ � f ð0Þi ð~r; tÞ
h i

� Dt
qcp

� �
wir �~qR

ð24Þ

Eq. (24) is the desired equation to be used in the LBM that
gives the same solution as that given by the energy equa-
tion (1).

With the LBM on non-uniform lattices, lattices are not
of the same size, and if the velocities are calculated based
on the respective lattice sizes, all the particle distribution
functions fi will not be available for collision at the same
instant which is a pre-requisite in the LBM [1–25]. To obvi-
ate this difficulty, all the particle distribution functions fi

from all the lattice centers are allowed to move with the
same velocity which corresponds to the smallest size lattice.
However with this, the fi from a given lattice centre are not
equidistant from the neighboring lattice centers. To allow
the collision at the same instant, and thus to have a single
relaxation time, the fi in a given direction are interpolated
to make them reach the neighboring lattice centers and
thus remain available for collision at the same instant. This
very interpolation concept has been recently used for fluid
mechanics problems by Lu et al. [27], Ubertini and Succi
[28] and Imamura et al. [29].

In case of a 1-D planar medium problem, in which we
have used the D1Q2 lattice, linear interpolation of fi have
been done as suggested by Ubertini and Succi [28]. How-
ever, for a better accuracy, for the 2-D rectangular enclo-
sure problem, as proposed by Lu et al. [27] quadratic
interpolations in a given direction with three known points
have been carried out. Further, to reduce the memory
requirement and CPU times, as suggested by Lu et al.
[27], interpolations of fi have been done at the propagation
step itself.
3. Results and discussion

The following two benchmark problems are considered
to validate the usage of the LBM on non-uniform lattices
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in solving the energy equations of transient conduction and
radiation heat transfer problems.

� Initially the 1-D planar conducting and radiating partic-
ipating medium is at a temperature TE equal to that of
the east boundary. Suddenly the west boundary is
brought to a temperature TW and for all times t P 0,
it is maintained at this temperature. The boundaries of
the absorbing, emitting and scattering medium are dif-
fuse gray. Thermophysical and optical properties are
considered constant.
� Initially the 2-D square enclosure is cold. Suddenly the

temperature of the south boundary is raised to TS and
for all times t P 0 it is maintained at this temperature.
The boundaries of the absorbing, emitting and scatter-
ing medium are diffuse gray. Thermophysical and opti-
cal properties are considered constant.

In both the geometries, validation of the LBM on non-
uniform lattices are done for the effects of various param-
eters such as the extinction coefficient b, the scattering

albedo x, the conduction–radiation parameter N jb
4rT 3

ref

� �
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Fig. 4. Comparison of temperature h in a planar medium at different instant
and the boundary emissivity e. These validations are done
for different values of lattice cluster C. In both the prob-
lems, the radiative information r �~qR required in solving
the energy equations is computed using the FVM. The con-
trol volume of the FVM and the lattices of the LBM do not
overlap (Fig. 1a and b), and thus the computed informa-
tion in the two methods are not available at the same loca-
tions. In the LBM, the r �~qR information is required at the
lattice centers. However, in the FVM, the same is available
at the centers of the control volumes and centers of the
control surfaces. In the 1-D case, a lattice has an overlap
with two control volumes (Fig. 1a) whereas in the case of
a 2-D problem, a lattice has an overlap with four control
volumes (Fig. 1b). Thus to bring the r �~qR information
to the lattice centers, averaging of r �~qR information
known at the centers of control volumes is done. Along
the corners and the boundaries, averaging is done with
r �~qR known at the centers of the control surfaces.

It is to be further noted that in the FVM, lattice centers
are situated at the centers of the control surfaces. In the
LBM, the boundary lattices extend a half distance away
from the boundary, however in the FVM for radiative
information, control volumes are all contained within the
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Fig. 5. Comparison of temperature h in a planar medium at different instants f for emissivity of the south boundary eW = (a) 0.1, (b) 0.5 and (c) 0.9.
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boundaries (Fig. 1a and b). Thus, in every coordinate direc-
tion, the number of control volumes in the FVM is one less
than the number of lattices in the LBM. Also the corner
lattices and the control volumes are of the same size
(Fig. 1b).

3.1. Conduction and radiation heat transfer in a

1-D planar medium

In this case, non-uniform lattices (Fig. 2) were generated
using the following expression

xn ¼
n� 1

nmax

þ C
p

sin
p n� 1ð Þ

nmax

� �� 	
; ð25Þ

where xn is the location of the lattice centre in the LBM,
nmax is the total number of lattices and C is a constant
(0 6 jCj 6 1) that determines clustering. For C = 0, uni-
form size lattices are obtained (Fig. 2a). For lattices/con-
trol volumes in Fig. 2b, C = 0.5 and that for Fig. 2c,
C = �0.5. The type of lattices/control volumes in
Fig. 2d and e are generated by dividing the solution do-
main in four zones and considering positive or negative
values of C.
To establish the workability of the LBM–FVM with
non-uniform lattices/control volumes, runs were taken
for different types of clustering as shown in Fig. 2c and
d. In all the cases, results of the non-uniform lattices/con-
trol volumes were compared against LBM–FVM with uni-
form lattices/control volumes (Fig. 2a). The number of
uniform and non-uniform lattices/control volumes in the
LBM–FVM was taken the same.

While generating the results, non-dimensional time step
Df = 1.0 � 10�4 (f = ab2t) was considered and steady-state
condition was assumed to have been achieved when the
maximum variation in temperature h ¼ T

T W
at any location

between two consecutive time levels did not exceed
1.0 � 10�6. In both non-uniform and uniform lattices/con-
trol volumes, beyond 101 lattices in the LBM and 100 con-
trols volumes and 10 directions in the FVM, no significant
changes in results were observed.

It is to be noted that in case of a 1-D planar medium,
radiation is azimuthally symmetric. Thus, 10 equally
spaced directions in the FVM was considered by discretiz-
ing the polar angle h(0 6 h 6 p).

To compare results of the LBM–FVM on non-uniform
lattices/control volumes with that of the LBM–FVM on
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uniform lattices/control volumes, in Table 1, at time
f = 0.05, temperature h ¼ T

T W
results are compared with

those reported in the literature [31–34]. With clustering
parameter C = 0.5, extinction coefficient b = 1.0, scattering
albedo x = 0.5, conduction–radiation parameter N ¼

jb
4rT 3

W

¼ 0:1 and TE = 0.0, at three locations in the medium
viz. x/X = 0.25, 0.50 and 0.75, this comparison has been
made for two sets of boundary emissivities eW and eE. It
is observed from Table 1 that the results for the both uni-
form and non-uniform lattices/control volumes are in good
agreements with each other and they are closely matching
with those reported in the literature [31–34].

In Figs. 3–5, comparisons of temperature h ¼ T
T W

results
with uniform (C = 0.0) lattices/control volumes have been
made for non-uniform lattices/control volumes with
C = 0.5. In Fig. 6, results have been compared for different
values of C.

In Fig. 3, for extinction coefficient b = 1.0 and conduc-
tion–radiation parameter N = 0.01, temperature h
computed from the LBM–FVM with uniform and non-uni-
form lattices/control volumes have been compared for the
effects of the scattering albedo x. It can be seen from the
figure that results for the both cases are matching very well.
The number of iterations for the steady-state (SS) solutions
in the LBM–FVM with non-uniform lattices/control
volumes for x = 0.0, 0.5 and 0.9 were 869, 1144 and
2492. The same in case of the LBM–FVM with uniform
lattices/control volumes were found to be 881, 1163 and
2639.

In Fig. 4, for x = 0.0 and b = 1.0, comparisons have
been shown for three values of the conduction–radiation
parameter N. It is seen that for both radiation dominated
(N = 0.01) and conduction dominated (N = 1.0) cases,
the result for the steady state condition with non-uniform
lattices/control volumes match well with those with uni-
form lattices/control volumes. It can be seen from the fig-
ure that at all times f, the results with non-uniform
lattices/control volume give slightly higher value with those
with uniform lattices/control volumes. For non-uniform
lattices/control volumes, the numbers of iterations for the
steady-state results were found to be 869, 3450 and 4887
forN = 0.01, 0.01 and 0.1, respectively. The same for uni-
form lattices/control volumes were found to be 881, 3706
and 5764.
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In Fig. 5, for b = 1.0, x = 0.0 and N = 0.01, with east
boundary as black eE = 1.0, comparisons of the tempera-
ture results have been made for the effect of west boundary
emissivity eW. It is seen that at all times, results with non-
uniform lattices/control volumes compare very well with
those of the non-uniform lattices/control volumes. In this
case too, the LBM–FVM with non-uniform lattices/control
volumes were found to converge fast. For eW = 0.1, 0.5 and
0.9, number of iterations with LBM–FVM with non-uni-
form lattices/control volumes were 1162, 995 and 892,
respectively. The same for the other case were 1193, 1024
and 905.
In Fig. 6, for b = 1.0, x = 0.0, N = 0.01, eW = eE = 1.0,
temperature h results for different cluster values C have
been compared at f = 0.015, 0.040 and steady-state. It is
seen from this figure for different clustering values, results
are in good agreement with each other.
3.2. Conduction and radiation heat transfer in a

2-D square enclosure

To validate the LBM–FVM on non-uniform lattices/
control volumes, next we consider transient conduc-



Table 2
Comparison of steady-state centerline (x/X = 0.5) temperature at three locations in a black square enclosure; x = 0.0

b N Centreline T/TS

at y/Y
Wu and Ou
[36]

Yuen and Takara
[35]

Mishra et al.
[37]

Uniform lattices/control
volumes

Non-uniform lattices/
control volumes

0.1 0.1 0.3 0.733 0.733 0.734 0.734 0.741
0.5 0.626 0.630 0.626 0.626 0.633
0.7 0.561 0.563 0.561 0.561 0.566

1.0 1.0 0.3 0.733 0.737 0.737 0.737 0.734
0.5 0.630 0.630 0.630 0.630 0.638
0.7 0.560 0.560 0.564 0.564 0.570

1.0 0.1 0.3 0.760 0.763 0.759 0.759 0.766
0.5 0.663 0.661 0.663 0.664 0.674
0.7 0.590 0.589 0.594 0.596 0.604

1.0 0.01 0.3 0.791 0.807 0.789 0.784 0.784
0.5 0.725 0.726 0.725 0.726 0.728
0.7 0.663 0.653 0.666 0.678 0.682

5.0 0.1 0.3 0.834 0.802 0.802 0.800 0.803
0.5 0.689 0.707 0.708 0.706 0.711
0.7 0.585 0.626 0.628 0.625 0.631
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tion and radiation heat transfer in a 2-D square enclo-
sure (Fig. 1b). In this case, initially the entire system is
at a temperature T0 = TN = TW = TE. For t > 0, the
south boundary temperature is raised to TS = 2T0. The
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The non-uniform size lattices/control volumes were gen-
erated from the following expressions
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xn ¼
n� 1

N x
þ Cx

p
sin

pðn� 1Þ
N x

� �� 	
ð26Þ

yn ¼
n� 1

Ny
þ Cy

p
sin

pðn� 1Þ
Ny

� �� 	
; ð27Þ
where xn and yn are the location of the lattice centre in the
LBM and the control volume corner in the FVM in the x

and y directions, respectively. Nx and Ny are the total num-
ber of lattices/control volumes in the x and y direction,
respectively and Cx (0 6 jCxj 6 1) and Cy (0 6 jCyj 6 1)
are parameter that determines clustering. For the four dif-
ferent sets of Cx and Cy, the 2-D lattices are shown in
Fig. 7a–d. With Cx = 0 and Cy = 0, uniform size lattices/
control volumes are obtained (Fig. 7a). In the present
work, numerical experiments were performed for the four
different types of lattices shown in Fig. 7a–d.

In the 2-D case too, like the 1-D case, the non-dimen-
sional time step Df = 1.0 � 10�4 was considered and
steady-state condition was assumed to have been achieved
when the maximum variation in temperature h ¼ T

T S
at any
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and (c) 1.0.
location between two consecutive time levels did not exceed
1.0 � 10�6. No significant changes in results were observed
beyond 21 � 21 lattices in the LBM and 20 � 20 control
volumes and 8 � 8 directions over the spherical space in
the FVM. The numbers of lattices/control volumes and
directions were same in both LBM–FVM with uniform
and non-uniform lattices/control volumes.

In Table 2, for the three values of the extinction coeffi-
cient b = 0.1, 1.0 and 5.0, and the three values of the con-
duction–radiation parameter N = 0.01, 0.1 and 1.0, with
scattering albedo x = 0.0, the LBM–FVM centerline

x
X ¼ 0:5

 �

non-dimensional temperature h results at three
y
Y locations for uniform and non-uniform lattices/control
volumes of the LBM–FVM are compared with those of
Yuen and Takara [35], Wu and Ou [36] and Mishra
et al. [37]. It can be seen that the LBM–FVM results for
uniform and non-uniform lattices/control volumes are in
good agreement with those available in the literature
[35–37].

In the following paragraphs, centerline x
X ¼ 0:5

 �

non-
dimensional temperature h along y

Y and for the steady state
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solutions, the numbers of iterations with uniform and non-
uniform lattices/control volumes of the LBM–FVM are
compared for the effects of various parameters including
the clustering value.

In Fig. 8, for b = 1.0 and N = 0.01, temperature
h(T/TS) computed from the LBM–FVM with uniform
and non-uniform lattices/control volumes have been com-
pared for the effects of the scattering albedo x. It can be
seen from the figure that at all times f, the results of the
non-uniform and uniform lattices are in good agreements.
The number of iterations for the steady-state solutions
with non-uniform lattices/control volumes for x = 0.0,
0.5 and 0.9 were 875, 1210 and 2439. The same with uni-
form lattices/control volumes were found to be 872, 1204
and 2218.

In Fig. 9, for x = 0.0 and b = 1.0, comparisons of tem-
perature h have been shown for three values of the conduc-
tion–radiation parameter N. It is seen that for both
radiation dominated (N = 0.01) and conduction dominated
(N = 1.0) cases, result for the steady state condition with
non-uniform lattices/control volumes match well with
those with uniform lattices/control volumes. For non-uni-
form lattices/control volumes, the numbers of iterations
for the steady-state results were found to be 875, 2788
and 3501 for N = 0.01, 0.01 and 0.1, respectively. The same
for uniform lattices/control volumes were found to be 872,
2764 and 3469.

In Fig. 10, for b = 1.0, x = 0.0 and N = 0.01, compari-
sons of temperature h have been made for different values
of the south boundary emissivity eS. Other three bound-
aries are taken black. It is seen that at all times, results with
non-uniform lattices/control volumes compare very well
with those of the non-uniform lattices/control volumes.
For eW = 0.1, 0.5 and 0.9, number of iterations with non-
uniform lattices/control volumes were 1049, 964 and 891,
respectively. The same for the uniform lattices/control vol-
umes case were 1048, 963 and 888.

With b = 1.0, x = 0.0 and N = 0.01 with all four bound-
aries black, in Fig. 11, temperature h results have been
compared for the four sets of clustering parameter
Cx = Cy = C. In this figure, C = 0.0, stands for uniform
lattices/control volumes. It is observed at three time levels
including the steady-state, results for all values of C are in
good agreements.
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4. Conclusions

Application of the LBM so far applied to heat transfer
problems with uniform lattices was extended to non-uni-
form lattices. To facilitate collisions to take place at the
same instant, interpolations of the particle distribution
functions were done and the single relaxation time based
on the smallest size lattice was used for all the lattices.
To demonstrate its workability, transient conduction and
radiation heat transfer problems in 1-D planar and 2-D
rectangular geometries were considered. The radiative
component of the energy equation was computed using
the FVM and then the energy equation was solved using
the LBM. Results of the LBM–FVM with uniform lat-
tices/control volumes were first benchmarked with those
reported in the literature. For various parameters including
the clustering parameter, results of the uniform and non-
uniform lattices/control volumes were found in good agree-
ments. In case of a 1-D planar medium, for all the cases
considered, LBM–FVM with non-uniform lattices/control
volumes were found to take less number of iterations for
the steady-state solutions. An opposite trend was observed
in case of the 2-D geometry.
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